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I. Introduction.

Among newer investigations into the theory of probability I know none more

important than those of Peakson in his admirable series of » Contributions to the

niathematica'i theory of evohition». The numerous school of biologists that has

grown up during the last ten years, which has applied his methods to fundamental

problems in botany and zoology, has richly demonstrated the importance of these

methods for biology and shown the possibility of basing the science of life on

exact mathematical methods. The branch of mathematics that is here in the first

place needed is the theory of probability. For this reason Pearson was obliged,

in attacking the problem of evolution from a mathematical point of view, to solve

some importimt problems in this theory, that had not to that time been sufficiently

dealt with. He has solved a great part of these problems. Others remained un-

solved or only partially solved. The object of the present investigation is to treat

some of these problems, which are of great importance not only to biology, but to all

sciences based on observations of nature. I should be glad if the results obtained

will contribute to further develop the line of research laid out by Peakson and his

school.

Taking an arbitrary individual in the living nature — a man, an animal, a

plant — it will generally be found impossible to find out another individual in

all respects identical to the one first chosen. If the difference is great, we say that

the two objects belong to different orders, classes, species, subspecies a. s. o., but

it is impossible to carry the classification so far, that the differences between the

individuals of the same sub-class would disappear. Nevertheless there is something

that rightly may be named classe, species a. s. o. of individuals, though the strict

definition of these terms is difficult and scarcely can be made without employing

mathematical methods.

Let us consider a number of individuals all belonging to the same species,

by which term we mean for the moment the narrowest group in the classification
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of the objects iu question. We take into consideration a certain character of

these individuals, and assume that this character may be measured as to its

magnitude or intensity, so that the measurements are expressed through numbers.

Generally the character may vary continuously, and its true value in each indi-

vidual can then only be measured approximately as the height of a man. In

some cases the magnitude determinations of a character are expressed exactly iu

numbers, as the numbers of petals in a flower. -In either case we generally find

that the character varies from one individual to another. In known manner the

characters continuously varying may be treated in the same manner as those ex-

pressible in integers and we assume that, expressed in a certain unit, the character

X may assume all, or at least some, of the integer values

0, +1, +2, +3, ±4, .

Counting the number — y — of individuals having a certain magnitude in respect

to the character in consideration, we obtain what is called a frequency-table or —
graphically — a frequency-curve.

What is the form of this curve?

The question seems at the first glance to be somewhat vag*, if not un-

answerable. Nevertheless experience has shown, that this curve really has a

certain form, which may be mathematically defined, and, what is still more astoni-

shing, that the parameters necessary to mathematically define a certain frequency-

curve are generally very few in number. Very often 3 parameters suffice for repre-

senting, with satisfactory approximation, a collection of thousands of individuals. It

is the duty of the mathematician to find the equation of this curve. As to the

search for the hypotheses necessary to declare the origin of the frequency-curve,

the mathematician and the observer of the nature must work together.

These hypotheses may be formulated in different ways. The question is

to find a hypothesis that will suffice for declaring all the different forms in which

the frequency-curves can occur. In searching for such a hypothesis we are aided

by the methods used in solving an astronomical problem of similar character. I

mean the explanation of the errors of observation.

According to Hagbn and Bbssel, who have given the best explanation of this

difficult problem, an error of observation may be considered as the cum of a great

many very small elementary errors. Let us suppose the question is to determine the

siderial time through meridian observations of stars. If the transit instrument were

installed exactly in the meridian, if the right ascensions of the stars were exactly

known, if the meteorological conditions of the atmosphere were known in all details,

if the physiological state of the observer at all observations were unaltered and if

all other circumstances that may have influence on the result were the same at

all observations, it is clear that we should obtain full agreement between the ob-

served values of the clock-correction. The true conditions, however, are somewhat

different from this ideal state. The adjustment of the instrument iff not fully correct,
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the coordinates of the stars are affected by small errors, the temperature, pressure

and other conditions of the atmosphere differ from one moment to another a. s. o.

Each error of observation therefore may be considered as the sum of a multitude of

small errors, derived from equally many independent sources. The law according

to which the errors of each source varies may be different for each source and

must a priori be considered as unknown.

In essentially the same manner we can declare the variation of the characters

in biology. Consider, for instance, the stature of a group of adult men. If all men

in the group be supposed to possess identically similar ancestors, if they have

enjoyed identically the same education, the same food, the same climatical in-

flueuces, if all other circumstances that may have some influence on the stature

of the man were identically similar for all men in the group, we must conclude

that the length of the stature of all these men must be the same, as truly as the

effect is determined from the cause. The differences in ancestral heredity, in

education, in food a. s. o. for a group of men may be considered as different

sources of error as to the stature of these men. Each source of error may cause

a positive or negative »elementary error* in the length; and through the addition

of these small quantities the resulting deviation in the length of an individual

from the supposed ideal length is obtained. Obviously the number of the sources

-of these elementary errors must be considered as very great, if not infinite.

This manner considering things seems to be very plausible. Meanwhile a new

difficulty appears, a difficulty of a mathematical character, which seems to make

the problem almost unsoluble. The number of the sources of error that each give

elementary errors is supposed to be very great and each source has its own law of

error, which must be considered as unknown. How great is the sum of all these

elementary errors? The problem is very difficult, but it has been attacked and

in principle solved by Laplace in his great work »Theorie analytique des probabili-

t^s» (1820). In two memoirs on the law of errors (Meddelandeu fr&n Lunds obser-

vatorium N:ris 25 och 26) I have discussed the problem, and shown some conse-

quences that may be drawn from the results of Laplace.

These consequences are the following ones.

A frequency curve may possess one of the following two forms:

Type A. If the frequency curve is defined by the equation y = F (x),

where x is the measure of the character in question, and y its frequency, and we put

'^1/2 71

designating by b and o two parameters, which must be duly determined, we can re-

present the frequency curve of type A through the equation

F{x) = A,^ [x] + A, f' {x) + A, cp- {x) + . .
.,

where ^g, A^, A^, . . . are coefficients independent of x.
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Type B. The frequency curve of the second form may be expressed with

the help of the auxiliary function

•^{X):
e sin w X 1 X X^ X^

X \\(x- 1) '

1 2 (a;—2) 1

3 (x—3)

where X is a parameter, and the general form of F{x) is then

Fix) =B, ^ (x) + B, A<p (x) -\-B,^^{x) + .. .,

where B^, B^, B^, . . are coefficients independent of x.

Beyond these two forms no other frequency curves can occur, except those

obtained through a superposition (addition) of several curves of the types A and B,

I will in this memoir more fully discuss these two forms of the frequency

curve.

As to the conditions for the rise of these two types, it may for the present

suffice to observe that type B arises, if the probability of a deviation from the

»ideal» value of a character, caused by each single source of error is very small,

whereas those sources of error, that possess an equal or nearly equal probability

for such values of the character as lie in the neighbourhood of the »ideal» one

give rise to a frequency curve of the first type.

By ideal value of the character here is meant such a value as would arise

if all sources of error that may influence on the character had their most probable

state. For the more precise formulation of the conditions for the two forms I refer

to the mathematical investigation in the memoirs cited. It must be remarked that

it is possible to pass continuously from one form to the other.

II. Type A of frequency curves.

Let X be the value of a character and F(x) dx the frequency of those values

that lie between x and x -\- dx. The frequency F{x) is represented by means of

the equation

(1) F{x)^A,^{x) + A,'r{:x)^A,^^^[x)+ ...

where
(x-b)'

The quantities b, a, A^, A^; A^, . . . are dependent on the form of the equa-

tion y = F[x). The formulae for determining these quantities have been given in

my treatise »Uber die Darstellung willkurHcher Functionens (»Meddelanden»

N:o 27).
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Choosing the origin of the a;-coordinates arbitrarily, we put

+ »

(2) \i.:=\af F[x)dx.
00

On the other side we put

(2*) [J-. = /(«—&)" F [x] dx,

— CO

so that

IK
=

V-:
- (0 ^> t^:.-.

+

(i) i' 'A-^ - (a) ^' \>'.-> +

where (;), (2), (|) designate the binomial coefficients.

If the quantity b is known, we know also the values of [j-q, \h^, jig, [Xj, , .

Now b is given by the equation

3) «» [J-o w = t^-i
•

We then have

(3*) {'o<^' = \h^

and the quantities A^, A^, A,^, . . . have the values

^0 "^
V-o >

l^-^i
^^

l-'-S'

(4) |i^4= ^4,— 3a*tJ'o-

|5^ = — IJ.5+ 10a2|j,3,

The quantities (Aj, [tg, (j-j, ... are named the moments, taken in respect to

(or about) the point b, of the curve y^F{x) of the first, second, third, ...

order. When these quantities are calculated, it is easy to calculate the values of the

coefficients A^, A^, A^, . . . according' to the formulae (4).

As to a it is uaraed by English writers on probability the standard deviation.

German mathematicians generally call it mean deviation or mean error. As to 9 (a;),

it is the form of the probability function generally used by Peaeson. I find that

this form is to be preferred before the usual Gaussian form

, , /.; —kHx-bf

Y %

where k is called the measure of precision. The diiJerence is naturally only a formal

one, but a, being a length (supposing x to be considered as a length), is easier to

conceive than the quantity k. I will in this connection remark that the so-called

probable error may without regret be removed from the practical applications of
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the theory of probabiHty, as the standard (mean) deviation says all that is wanted
from the calculus in the respect that here is concerned.

The values of the probability function (p (x) are most conveniently tabulated by

Sheppaed (»Biometrica» 1903). The argument of these tables are the quotient {x— 6): a.

In the same memoir also the values of the probability integral, that is oi the integral

f'f
(x) dx

are given in a similar manner.

As to the form of the derivated functions of ^ I remind of the relation

^' (x) = E, {x)
(f

[x)
,

where E,[x) is a whole rational function (i. e. a polynom) of x of the degree s.

For the lowest values of s we have

,8

1,

[x—h].

,23^ i?3 = + [x—hY — a'.

3« Bs=—{x—lf+ ^o^{x—h).

B^ = + {x—lY— 6a^(a;—&)^+ 3 a*,

' iJg = _ [x—bf + 10 <s^.{x-lf — 15 a* [x—h),

' i?g = 4- [x—bf— 15 o^ (,cc— 6)* + 30 0^ [x—by — 15 a«.

Hence we find that a' E, is a function only dependent on the quotient

{x— b): a. As the product G(f{x) also depends only on the same quotient, it is obvious

that the functions

a
'f

[x), a* tp"' [xl 0^ tp" [xl o« f (x), .

are functions only of a single variable and hence may be conveniently tabulated

with this variable as tabular argument.

I give a short table of the first three of these functions as well as of the

probability integral at the end of this memoir.

In many instances the following abridged table will suffice, for constructing

a frequency curve (compare (5*)):
^



Hesearches into the theory of probability. ^

The comparison between the observed and the calculated values of the fre-

quency cannot be performed diredhj with the help of this table. For this purpose

it is necessary to make use ol the fuller tables at the end of this memoir. The fre-

quency curve may, however, be constructed with the help of. the above abridged

table and compared with the empirical frequency curve. Compare the examples

1 and 4 beneath.

We write the series (1) in the form

(5) o F [x) = [>., [^ f (x) + ^3 a^ -r {x) + (3,
rj f^ [x] + . .

J

or

(5*) ^ F [x] = [i-o ['f
('•) + Ps 'f3 (*) + Pi 'U (^) + -1

.

where

P3
= A,

and generally

Using the abbreviation

(6)
V. = [J., : iJ-o

we obtain the following simple formulae for the calculation of the coefficients

K K
I3p3

= -V3:c^

(^)
|o,% = -v.:o,+ 10v3:a^

[6Pe= V, :a»— 15v^:a*+ 15,

The functions <s' [x) are even functions of x—&, if s is an even number, and

change the sign with x—h if s is odd. Hence we find that the functions 'i™ (x),

(p^ (x), . . . are liable to give to the frequency curve an unsymmetrical form, which

is not the case with <if (x), <f^ (x), a, s. o. "We find from the diagrams numbered

1, 2, 3, 4, 5 some instances of the influence of the first two terms on the form of

the frequency curve.

Fig. 1 is the usual normal-curve. Figures 2 and 3 show the effect of different

values of jS^ on the frequency curve. It is here supposed that (5^ and all other

coefficients in (5) vanish. For great values of x—h we here obtain negative values

of the frequency, which is not possible in reality. The neglected terms of higher

order must compensate those negative values. If j3j and all following coefficients

are small, it is convenient, to choose |3g as a measure of the skewaess or dissymme-

try of the curve. We hence will call Pg the coefficient of dissymmetry (or skewness)

Lunds Univ:s Arsskrift. N. F. AM. 2. Bd 1. 2
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of the frequency curve ^). Froin the illustrations we may conclude, that a dis-

symmetry corresponding to the value p, = 0.5 must be considered as rather high,

the frequency curve being then far different' from the normal curve. It is to be

expected, that in practice the value of Pg will seldom exceed 0.5. The following

coefficients in the series may however allow higher values of Pg to occur.

The effect of the term p^ a^ y"' (x) may be shown from fig. 4 and 5, in

which the noi-mal curve is indicated by a dotted line.

For p^ = -j- 0.1 we obtain a curve similar to the normal curve, but it is

directly observable from the figure that the number of individuals between x—h= —a

and X — h = -{- a is greater when tlie frequency curve is characterized by

P4 ^ + 0.1 than for |3^ = 0, when we have a normal distribution. The contrary

takes place when 15^ = — O.l, or generally when ^^ has a negative value. We
may conveniently, using an analogous noinenclature proposed by Peaeson (Math.

Contrib. I 1894), call j3^ the excess of the frequency curve.

In the simplest cases — and also the most usual ones — the coefficients Pj

and j3^ are sufficient to characterizise the frequency curves, naturally together with

the mean (6), the standard deviation (a) and the coefficient Ag ((j.^), which latter

equals the area of the frequency curve.

The equation (1) of the frequency curve being found it is easy to calculate

the values of the mode and the median, which are sometimes used. For the mode,

which corresponds to the maximum value of the frequency, we obtain the equation

= F' [x] = A, y' [x) + A, (p- [x] + A, f {x) + ...

If J 3 and A^ are small quantities, as is here supposed, the value of x—h

satisfying this equation must be small. We obtain the following equation for the

coordinate — ajj — of the mode

(8**) = - ^, + pg [3- 6 z,' +^,^] + p, [- 1.5 z, + 10 ^,^- ,^^\ +
+ p, [- 1.0 + 30 z,^ - 15V + ^/J + • . .,

where
x, — &

^^ =—a"

•

Retaining only the terms of lowest order, we hence obtain

(8)

or, if Pj be neglected,

(8*)
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1

in relation to the mean. If the excess of the curve is small, it will he allowahle

to use the formula (8*).

As to the coordinate x^ of the median, it may obtained in the following

manner.

The median is defined in such a manner that the number of individuals

between negative infinity and the median (x^) is equal to the remaining number of

individuals between x^ and positive infinity. Hence the ordinate corresponding to

x^x^ divides the frequency curve into two equal parts.

We hence have

lF{x) dx —fF {x) dx = 0,

CO .T.,

or, if the expression (1) for F{x) is introduced,

(9*) = A,j(c (x) dx-A,l's. (x) dx + 2A,
'f
" [x.,) + 24^ <p"' (x^) + ...

— QO X^

For solving this equation we assume that A^ and A^, aiil in a still higher

degree A^ and the following coefficients, are small quantities. As

b 00

j'f (x) dx = jf [x) dx
— oo b

it is therefore necessary, that x^ has a value little different from b. We put

and consider z^ as a small quantity.

For developing (9*) in powers of z^, we observe, that

X.2 h x„

jw (x) dx = I'D [x] dx -\- jf {x) dx
— CO 00 6

and also

so that

b

CO (Tj

'f
{x) dx ^ -^

—
\'f

{x) dx,

X^ 4" °° ^2

j(D {x) dx —
I'-f

[x) dx = 2/(p (.-r) dx
-co x„ b

= 2 of 'f
[h + a £) dz.
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According to the value of (f{x) we find that

z-

y 27:

and, developing this expression into powers of z and integrating, we thus finally

find the following equation for determining z^:

(9**) = ^,-^+ . + p^^_ 1+1^1+
,.J
+ p^^3^^_|^3 4-.

Neglecting j3g, [3g, . . ., and terras of the t,hird order we obtain

z« ^
1+3P,

and hence we have

x^ = b^ -Hs

1 + 3p,

For Pg = (Pg and the higher coefficients being neglected) the mean, the mode

and the median coincide. For frequency curves with small excess (for others we

cannot conclude anything definitely from these foi'mulse) the median is situated ie-

twcen the mean and the mode.

o o ^
ui m o

o
a.

The relative position of the mean, the median and the mode is first given by

Peaeson, who has derived it from his theory of frequency curves. For curves

with a sensible excess the order of these points may possibly be different.

III. Numerical determination of the parameters

of a frequency curve.

The calculation of the coefficients p,, |3^, ... according to the formulse (7) is

a fairly simple affair, when the moments of the frequency curves are known. As

the calculation of these moments has been thoroughly discussed by Peaeson and

his disciples, it would not be necessary to expend many words on this matter,

were it not that some special points here deserve a closer examination. It ought
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to be demonstrated that the formula (1) is actually suitable to represent frequency

curves, that is, that the number of coefficients in the series necessary for obtaining

a practically sufficient representation is rather small. It will be shown that for most

purposes it suffices to know the coefficients Pj and p^. When the series of obser-

vations on which the frequency curve is based is yery numerous, it may be de-

sirable to know the values of Pg and Pg also. This naturally is also the case, if

the curve of frequency differs much from the normal curve.

As to the calculation of the moments of the curve I refer to the researches

of Pearson and Sheppabd (Proc. Loud. Math. Soc. Vol. XXIX). The methods

for obtaining the numerical values of the moments are clearly summarised by Daven-

port (»Statistical Methods* P. 19 ff.). In a certain, point it will be necessary to

complete the numerical methods used by these authors, namely in respect to the

checking of the numerical results. It must be considered as a rather laborious and

imperfect method to check numerical work through double calculation or » calcula-

tion in pairs*, as is recommended by the last named author. A scheme for nume-

rical calculus must be so arranged, that errors may be detected by the computer

himself, and such arrangements are generally easy io perforin. In the first example

I have carried out the control in extenso.

I bring here together the formulae necessary for the calculation of the moments

and of the coefficients of skewness and excess (Pg and pj.

(i\) \i.: =Y.cifF[x). (s = 0, 1, 2, ?,, 4).

(b) v,' =
t».;

:

p-o'.

Control:

(c) S(a; - \fF[x) = |j./ — 1'^.^' + Q^.^ — 4(i./ + [i.„'

or

(d) x(x + \fF[x) = [i.; + 4(i.3' + 6[.; + 4^./ + (.;

1,2

(e) /. = v,',

(f) o^ = v, = v,'

(g) V3 = V3' - .%v; + 26^

(I1) V,, = v/ — 4JV8' + ei^Vg' — 3&1

Confrol

:

(i) Ps = - v.,
:
6o»,

(k) p4=AK:<'*-3).
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TABLE II. Scheme for the calculation of frequency curves.
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^he last part of the calculus, (j) and (k) — by which |3g and [3^ are obtained —
as well as (b) must be controlled through dottble calculation.

A complete scheme for the calculation of a frequency curve according to the

above formulas is given on the preceding page.

When a certain statistical material in respect to a »collective objects is to be

discussed, the first thing is to arrange this material into classes, all with the same

extension (range) as to the character in question. The class range is taken as unity

of the abscissffi. By inspection a class in the neighbourhood of the mean is chosen

and considered as the origin from which the ajcoordinates are reckoned. The two

classes, on both sides of that class, that is numerated with 0, get the number -|- 1

and — 1, and so on. The moments are calculated according to' the equations

(a)— (h). It is not necessary to take into account the corrections given by Pearson

and Sheppard, if the class range is sufficiently small and coefficients of higher

order than |3^ are not taken into consideration. As a rule it may be advisable to take

the class range smaller than the standard deviation, the approximate value of which

is easily found from , the frequency table (f of the material being included between

the limits h -\- a and h — a).

The corrected formulae for the moments given by Sheppabd are:

(vg) = Vj' — 3&V,' + 2¥ = V3

(vj = v; - 4fev3' + m\ - 36* - '0= - A

where (vj, (Vg) and (vj design the corrected values of the moments (strictly the

moments divided with [i.„).

1" Example. For illustrating the above general theory I begin with a fre-

quency curve discussed by Davenport, belonging to the type I of Pearson ^).

Distribution of frequency of glands in the right fore leg of 2000 female swine.

Number of glands 01 2 3 4 5 6789 10

Frequency 15 209 365 482 414 277 134 72 22 8 2

We choose 4 glands as the provisional origin of the ajcoordinates. The cal-

culation scheme will then assume the following form.

') The frequency curve discussed in this example belongs, strictly spoken, to the type B,
tho curve obviously being limited in one direction. It may, however, be used as an example of
such curves as, though belonging to the second type, may be conveniently represented through
the formulffl of type A. If notable diSerences occur at the limited end of the curve between the
observed and the calculated values, it will be necessary to use a curve of type B. I have treated
the same curve as a Bcurve beneath.
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As to the controls it is to be remarked that the control (c), being a mere

transposition of the terms, must give full agreement between the two results to the last

cipher. As to the control of the second part of the calculus, through (i), a diffe-

rence between the first and the second value of v^'- may amount to some units

of the last cipher. The difference in the example is 0.008, and hence rather great,

and is probably caused by the neglected decimals in h^ There is, however, no

reason to make the calculation with more decimals.

All multiplications and divisions (partially also the additions) are performed

with the aid of a calculating machine (I use for the present a machine of Odhners

construction).

The five parameters hence have the following values:

[J.0= 2000,

h = — 0.499,

a = -\- \ .681,

Pg == — 0.0848,

|3^ = + 0.0046.

For comparing the observed values of the frequency with the theory we must

calculate the values of f^, ^3, tp^ corresponding to the different classes. From

tables B, C, D at the end of this memoir we obtain the values

{X-

H
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TABLE III. Distribution of frequency of glands in the right fore leg of 2000 female swine.

n == number of glands.

Control.

{x + Xf
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The agreement is as perfect as can be wished. The difference for w =
and w = 1 will diminnish, if a curve of type B be used. I have not considered this

necessary in this case, as the curve of type A also gives a very good agreement.

In example 8 I have in addition given a comparison of the same material with a

curve of type JB.

In constructing the curve of frequency I have not directly used the above

values of the frequency. It is namely useful and instructive to reproduce the dif-

ferent frequency curves all in the same scale. For this purpose the standard devia-

tion a is taken as unit for the abscissae and the numbers expressing the frequency

are all multiplied by a : [j-q. As we have

H'o

we thus obtain for all frequency curves with the same values of Pg and p^ iden-

tically the same form. The construction of the curves of frequency is very simple,

if the table I is used. The abscissae of the observed values are obtained by means

of the expression

X— h

where x denotes the value of the character in question referred to the provisional

origin. The comparison between theory and observation may conveniently be made

with the help of the curve.

For the position of the mean, mode and median we obtain the values:

Mode: a;= 3.07,';,

Median : x = 3.359,

Mean: ic = 3.501.

Second Example. Distribution of frequency of stigmatic hands of 1001 samples

of Papaver.

All the flowers were gathered in the same garden in Arild (Sk&ne) and counted

by me the 27 July 1905.

Number of bands
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Third Example. Distribution of frequency in the weight of brown beans.

JoHANNSBN has made a very important investigation ') into the weight and other

qualities of brown beans (Phaseolus vulgaris), which he has studied in many genera-

tions. What is specially characteristic in his researches is the self-fertilisation of

the plants used in his experiments, so that it is possible for him to study the effect

of hei-edity in its purest form. B'rom the material published by him I take out his

results respecting the weight of the beans in the third generation (1902). All the

beans here considered derive in direct hne from 19 grandmother-beans (1900), each

constituting a line distinct from the other ones.

We have here to do with graduated variates (Davenport) that are capable of

assuming all possible values within certain hmits. In the first 2 examples the

jc-coordinates that measure the character in question, could assume only integer

values. The graduated variates must be taken together in classes. The class range

I take as by Johannsen to 50 mg. The provisional origin is for all hnes taken

to 475 mg. Hence class 1 has a mean weight of 525 mg, class 2 of 575 mg and

so forth. The numbers given by Johannsbn for the weight of the beans are con-

tained in the following table.

TABLE IV Frequency table of brown beans (Johannsen).

Middle of

the class
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TABLE V. Parameters of frequency curves for pure lines of Phaseolus vulgaris.
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Fourth Example. Distribution of freguencij in the cephalic index of 22505

Swedish recruits.

In an important work » Anthropologia suecicai> M. Retzius and Fuest have

studied the Swedish recruits in the years 1897 and 1898 in different respects of

interest for statistical anthropology. From this work I take out the following

numbers relating to the cephalic index (»Schadelindex») of 22505 Swedish recruits

in the year 1897.

Cephalic index



22 C. V. L. Oharlier.

secutive days. Thus on the 7'", 8* and 9"" August there occurred in all 11 cases

of typhoid fever, on the 10'", 11'" and 12'" in all 24 cases a. s. o.

Date Aug. 5, 8, 11, 14, 17, 20, 23, 26, 29, Sept. 1, 4, 7.

Frequency 2, 11, 24, 49, 46, 32, 16, 23, 10, 5, 2, 0.5.

Class -6, -5, -4, -3, -2, -1, 0, +1, +2, +3, +4, +5.

Hence the class range is equal to 3 days. The provisional origin was taken

at the 23'" August.

For the parameters of the theoretical frequency curve I obtained the values

[i.„ = 220.5,

i = — 1.658,

a = -f 2.058,

Pg = — 0.0882,

P^ = — 0.0047.

The mean corresponds to the date Aug. 18.0, the standard deviation amounts

to 6.17 days. The comparison between theory and observation is shown from

fig. 12. The discrepancies are here rather great, as may be expected from such

material. It is obviously connected with great difficulties to determine with some

certainty the beginning of the disease in each individual case. Probably accuracy

may be augmented if the attention of the physicians is directed to the importance

of accurate statistical determinations.

Notwithstanding the imperfection of the material, we find that the theoretical

frequency curve reproduces the general features of the curve indicated by the

observations fairly well. The negative skewness implies that the increase in the

number of infected persons is more rapid than the subsequent decrease after the

maximum is reached. This is perhaps characteristic for all such fever maladies.

IV. Type B of frequency curves.

This type is expressed by means of the generating function

(10) '^(x)
e sinitx 1 X

.
X^ \ 3

X il(x— 1) ' \2(x— 2) \3{x— 3)

We write (pxWi ^^^' ^i^)^ i^ ^® want to indicate that a parameter X occurs in

<^(x). We find from (10) that <^{x) is a whole transcendent function of x, which hence

is infinite for no finite value of x. For x = — 1, — 2, — 3, ... if[x) vanishes.

Considering i)Ax) as a function of X, we also find that this function is a whole

transcendent function of X. 1 have given (»Meddelanden» N:o 26) for i([x) also

another form, as an integral, namely
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(10*) ()j (aj) = — / g
cos (u

^^g j^ ^^j^ ^— _^^j ^^^

wliich may sometimes be preferable to the series (10). If r be a positive integer,

we have

(11) Hr) = "-~-

In the following iuvestigation we shall find, that, by suitably choosing the para-

meters c, (I) and X, a frequency curve approximately may be represented by means

of the formula

^(-) = ^o+x(V)-

Hence the function '^^{x) will give for different values of X the differents forms

of the fi-equency curves of type B. In fig. 13 I have reproduced some of these

forms, where it may be observed that only integer values of x are taken into con-

sideration. We find that the frequency curves of type B for x^c discontinuously

breaks up and possesses a finite value, whereas for a; = qo i^-^{x) tends towards zero.

With increasing X the curves gradually approach the form of the curves of type A.

More generally we may write a frequency curve of the type B in the form

(12) F{x) = B,^ [x) + B,^ [x] + B,^'^ (x) + B,\''<^ {x) + .-..,

where (»Meddelanden» N:o 27) the coefficients have the following values

|2 5, = XVo'-(2X+1)h-/ + j.,',

|3 ^3 = XVo' - (3X^ + 3X + 2) tx/ -f 3 (X + 1) v^,'
- ,.,',

|4 .B, = XV„' — (4X8 _|. 6^2 + 8X + 6) [j./ + (6X^ + 12X -f 11) [j,,'

-(4X + 6)[.3' + [x/,

and \L^\ (Xj', [Xg', . . . are defined by the formula

(12*) ^: = i:x'F(x). (s = 0, 1, 2, ...)
CO

The parameter X may be arbitrarily chosen. It is possible to introduce two

new parameters, if we write instead of (12)

(13) F{x(^ +c) = B,'^ {x) + B,^ {x) + B,^^ [x) -{- B,^'^{x) + . .
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It is now

x=— 00

= Sr,(L«)i^(,),

in which formula y must assume all values given by the relation

y = XM -\- e,

where x = 0, +1, +2, +3, ... tn inf.

As to Tr(x) we know that it is a polynome of degree r in x. If we write

Z{x) = S^a;'- + 8«a;'-' + . . . + 5<l.rc + S",

and observe that

(J.." = w S {y—c)'F[y) = w S (ra))«^(c + rw)

»-^ — CO

is dependent on c, but independent of w (if co is rather small), we have

so that the values of 5^, JB^, . . . now are

(14) a)^|2 5, = XWti;'-(2X+l)a)(i./' + [j.;', ^

M* 13^3 = X^wVo" — (3X^ + 3X + 2) 0)%" + 3 (X + 1) o^ii,;' — [1,3",

0)5 14 5^ = X%X" — (4X' + 6X^ + 8X + 6) wX" + (6X^ + 12X + 11) w^s"

-(4X + 6) a)[i.3" + (.,",

The frequency curves of the type B may be treated mathematically in diffe-

rent manners. In the general formula (13) w, h and X may be arbitrarily chosen.

The greatest convergency is generally attained if these constants are determined

in such a manner that B^^B^ = B^^O. It is, however, not necessary to choose

the parameters in this manner. Sometimes it will be found convenient to give to

X, c or to determinate values. We will treat some of these values.

l:o. We put (0 = 1 and c= 0.

It is now

(15) F[x)-= B,ii^{x) + B,A^ + B,^^ + B,^^ + . .

.

Dividing the expressions for B^, B^, B^, ... by B^, we obtain, if we put

(16*) [x„'v.' = ii./,



Researches into the theory of probabiUty. ^5

B, = i?„(X-v/),

(^^)
|3 ^3 = B, (k' - (3X^ + 3X + 2) v/ + 3 (X + 1) v,' - v,'),

|4 J5, = B, (X*— (4X8 _|_ 6X2 + 8X + 6) v/ + (GX^ + 12X + 1 1) v,'

-(4X+6)v3' + v/),

We give to X such a value that the coefficient B^ vanishes. We then have,

putting Vj' = b,

\2_B,=^B,{v,- -b'-l\

|3 B3 = 5o (— 2&' - 36= - 26 + 36V2' + 3v; - V3'),

|4B, = 5o(— 36*— 66'— 86= — 66 + (6Z;^+ 126+ ll)v2'

_(46+6)v3' + v/),

We here introduce the moments about the mean that are defined by the

equations

(17*) ^L^y,==l(x-hyF{x)^ (s = 0, 1, 2, . .),

h being the coordinate of the mean, so that

V.' = V, + b\

V3' = V3 + 36v, + 6^

v,' = v, + 46v3 + 66^, + 6^

which relations are obvious, if we remember that the mean is determined in such

a manner that the first moment about it vanishes.

The expressions for B^, B^ and B^ now assume the simple form

|2 5, = JB„K-6),

(17) |3 53 = iJo(-V3 + 3v,-26),

|4 B, = B, (v, - 6V3 - 66v, + llv, + 36= - 66),

When the moments about the mean are known, the coefficients B^, B^, B^

are easily- obtained from (17), and we have

(17**) F{x) = ^,ii^{x) + B,^^ + B,^^ + B,^^ + . . .,

where now X = 6 = v^'.

2:o. We put to = 1, leajving c undetermined.

If we employ the parameters c and X to make vanish the coefficients B^ and

Bj, we now have

Lands Univrs Arsskrift. N. F. Afd. 2. Bd 1. 4
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-So = C-O'

C = 6— Vg,

^ = Vg,

and it is

|3:^3"=>o(^-v3),

|4 B, = |Xo (v,- 3vi — 6V3 + 5vg),

where it is supposed that

S (c + x)'F{c + x) = I.ocfF{x) = p.;.

3:o. We determine X, w and c in such a manner that B^ = B^ = B^ = 0.

Multiplying (13) by 1, x, x^ and a3^ we then obtain the equations

lF{xM-^c) =B,^Hx) =B„
x^— 00

(18) lxFix<^-\-c) =Bo^x<!f(x) =BoK
S x^F{xt>> + c) = ^0 !• x^<!^ (x) = 5o (X^ + X),

S :r«i?'(a;w + c) = ^^ S ^c"']^ («) = ^o 9^' + 3X^ + X).

These equations may be regarded as exact ones. For solving them in respect

to Bq, u), 6, X we must have recourse to approximations. Defining the moments

[J./ of the frequency curve about a provisional origin by the equation (12*), we

suppose that

(19) [J,; = S (a;(o + c)' w JP(a;w + e)

33= — CO

and hence — using this value of jj./ — we have

0) S F(xoi -\- c) = [tfl',

0)^ S xF[x()> -\- c) = (0 S (wa; -\- c— c) i^(a;(o + c)

= [I,/ — C(lo',

(0^ S a;^i^(cca) + c) = «» ^ (wa; + c— c)*2''(a;(rt + c)

= (J,/ — 2cjJ,/ + c>o'.

M* S a;'i^(a;(o + c) = 1I3' — 3c(ij' + 3c>/^ cY^'.

The above equations (16) then assume the form

!^o' = »-So>

[J,; - 2< + c>o' = «)«.Bo(X'' + X),

t^s'
- 3ch' + 3cY./ - cVo' = '"^^ol^^' + SX'' + X),

or, putting
.

t^oV/ = iJ..',
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4:o. The quantifies X and lo are so determined that B^ = B^ = 0, whereas c

is chosen arbitrarily.

The method 3:o may seem to be the best one, but has the inconvenience of

giving to CO very small values and to X very large ones, when v, is vanishing. Hence

it is not applicable when the curve differs little from the uormal-form. The

following method seems to have a general applicability and has also the advantage

of a certain similarity with the process used for the curves of type A.

We begin with choosing a determinate value for the quantity c. In many

cases it will he found convenient to identify c with the abscissa of the discontinuous

end of the frequency curve.

When the value of the quantity c is determined (and it must be borne in mind

that this determination is to a certain degree arbitrary) we dispose of X and w in

such a manner that the coefficients B^ and B^ vanish. According to (14) we

thus get the equations of condition

f24]
= Xcofio" — iJ./',

' = X^a)^lV'-(2X+l)o)[i./' + (x,".

For solving these equations we observe that the moments ja,", which are taken

about the point c, may be expressed through the moments \i, about the mean.

We have indeed approximately:

h" = h + (I) (& - c] ^-. + il) [b - c)>,_. + . . .

As [J.,1 ^ we thus obtain

H-i" = (ft — C) (lo,

tJ-s" = IJ'2 + (^ — C)>0-

H" = 1^.8 + 3 (ft — c) [1,2 + {b — cf tJ-o,

t^-*"
=

P-i + 4 (ft — c) tJ.3 + 6 (ft — cY [j,^ + (ft - cf (lo,

Substituting these values in (24) we get the following values of X and w:

(26)

x_fc^

— c'

where '3^(=V2) signifies the standard deviation.

As to B^ and B^ they now assume the values:

CO* 14 B^ = B, [v^— 3v| + 5coS, — 6m,
(26)

Hence we may write the frequency curve in the form

(27) F{xi>^ + ''^ =
w

^'^ ^""^ + Ts ^' -P + Ti A* <j; +
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where

^"^^^
(0* |4 T^ = vj^ - 3v 2

-I-
505^ v^ — 6MV3.

These expressions we may also write in the following form

or, introducing the coefficients Pj and (3^ beleugiug to the curves of type A,

(29)

Ts = -|3 ^ + Ps^*'

24^ + "2T. = ^X + -^P3X* + P,X^

in which form the calculation of the coefficients for the curves of type B is easily

performed.

For graphical construction it will be suitable to write the equation of the

frequency curve in the form

(30) ^F{xu> + e) = V^['H^)'\--h^''^ + n^''^+- ]
ro

The formulae (25), (27) and (28) contain all that is necessary for the calculation

of the curves of type B. The numerical operation is substantially the same for

the curves of both types. The calculation of [i-g, v^, Vg, v^, o, &, Pj, |3^ is executed

according to the scheme II. Then X and to are calculated with the help of (25),

and Ys and Y4 bj' the formulae (29). The graphical construction and the comparison

with the observation is performed with the help of (30). As for the present the

values of the function '!^{x) are tabulated only for integer values of the argument

the comparison between observation and theory must take place in graphical

manner. The values of t|)(a;) for integer values of x are given according to Boetke-

wiTscH, in tab. E.

It is supposed in these investigations on the curves of type B, that

(31) o>'L(xbi + c]'F{xoi-\-c) = lafF(x),

where x takes all integer values between — co and + co . In many eases, how-

ever, this relation must be regarded only as a rough approximation. It is neces-

sary to calculate the corrections to this formula and the resulting corrections to

the expressions of the parameters of the frequency cm-ve. For want of time I

have not at present opportunity to work out these formulae (the corrections of

Shbppaed are not here sufficient), but will confine myself to making an observation

on a single point.
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We suppose c to be the abscissa of the discontinuous end of the frequency

curve. It is then = F(c— w) = jF'(c— 2a)) = . . . . Put s = 0.

The area — Y — between the frequency curve and the hne of the abscissae

may approximately be written

Y= CO [lF(c) + F{e + 0)) + F{c + 2(o) + . . .]

or also

r= iF(c) + i?'(c + 1) + i^(c + 2) + . . .

Using the abbreviation

(lo = F(c) -\- F(c -\- 1) -^ F(c -{- 2) + . . .,

which is adequate when integral variates are concerned, we thus have

(0 S F{a^ + c) = iJ,o + i F[c) (o) - 1),

whereas in the preceding investigation the term multiplied by F{c) was omitted.

Using only this correction the equations of condition in case 4:o take the form

(32)

(.,' = a)'£„(X^ + Xj,

which equations may be exactly solved.

Putting

we obtain m from the equation

(33) w' + 2(0

then X from

(33*)

1
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V. Numerical applications.

I will apply the above general theory to some examples.

Sixth Example. Number of petals of Ranunculus tulbosus.

The following numbers are given by Hugo de Veies and treated by Peabson

(» Contributions* 1895).

Class
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It is to be observed that (])(

—

1) = <^(— 2) = 0, as follows directly from the

formula (10).

We now derive the following values of F(x):
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Eighth Example. Distribution of glands of swine, given in Example I, treated

as belonging to type B of frequency curves.

As has been already remarked, the frequency curve in this ease may alterna-

tively be regarded as belonging to type A or to type B. I have treated it before

as an Xcurve, and will now consider the same numbers belonging to a curve of

type B.

Using the 4* method above, we obtain, according to the formulae (25) and (29):

b— c = 2.082 a,

X = 4.326,

CO = 0.480 a,

Yg = — 0.042,

T4 = — 0.16.

Diagram 16 shows the comparison with the observations '). As might be ex-

pected, the agreement is somewhat closer at the discontinuous end than in example I,

but, generally speaking, either curve may be used to represent the observations.

Theoretically the curve B may be preferred.

Other examples of frequency curves belonging to type B may be gathered

from different domains of statistics. I will conflne myself, however, to the above

given examples till two desiderata of the theory of these curves have been filled up.

In the first place it is necessary to calculate a table of the function i/y_[x), giving

the values of this function for fractional values of the argument. In the second

place it is necessary to calculate the error of the formula

(0 S (a;M -f c)'F{xb^ + c) = S afF[x\

on which the computation of the parameters of the curve depends.

VI. Dissection of a frequency curve into components.

This problem has been first treated by Peaeson. I have made during my
lectures on the theory of probabiHty this year some researches into this subject, and

I will give here some extracts of the results obtained, reserving a fuller report till

another opportunity.

Let us suppose that a given frequency curve is the resultant of two frequency

curves belonging to the type A, with the corresponding values of (3g and [3^ equal

to zero. We hence have

(34) F(a?) = Ci(pi + C2<p2,

') In constructing the curve, the coefficients Ys and Yi have been neglected.

Lunds TJniT:s Arsskrift. N. F. Afd. 2. Bd 1.
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where c^ and Cg are certain constants and ip^ and
'fg

are two normal curves, each

with its special value oC the coordinates of the moan {b^ and b^) and of the standard

deviations o^ and a^.

Designating now with
{x - by

1 20^'

/-—^^

another normal-curve, we have, according to the general theory,

(35) c,<p, + c.tf, = A,f + ^3 9- + A.f^ + . . .,

b and a being determined in such a manner, that A^ and -4„ shall vanish.

The formula (26) in the »Meddelanden» N:o 27 gives us the following general

expression of the coefficients J.,.

+ 00
_2r /*

^r=y I

[Ci 9i + Ca ips] 2?,. (x) dx,

~ — 00

where By{x) is given through formula (28*) in the same memoir.

Multiplying (35) successively by E^, iJ^, B^, R^, ... and integrating, we

now obtain the following equations for determining the unknown quantities c^, &j,

Oj-, Cg, 63, Og. For the sake of convenience we have iulroduced the denominations

(36)

1/2 = ^2 .

Aq Cs "= \s A,.

The equations now take the form

^1 +

yls,{16xl^20x,y, + 6^1) ^ yl^,(lbxl

From which equations the six unknown quantities x^^, y^, 0^, x^, y^, z^ are

to be calculated. It is to be observed that Cg, C^ and Cg are known functions of

the moments of the given frequency curve.

We have indeed

(38) C. = |^a'P.,

where |3, (for s := 3, 4, 5, . .) are the characteristics of the frequency curve (Com

pare (5*)).

b^x^ = b\^^\-
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The solution of the above equations is dependent ' on a certain nonic, given

by Peabson.

We commence with the ehmination of the quantities x^, b^ and ^j by means

of the relations

(39) (2/1 — 2/2)^1 = — «/2,

(2/1 — 2/2)^2= 2/1 •

We then obtain the equations

2/i2/2[3a;i— 2(t/j +«/j)]= £3,

y,y,[^xl - 2(2/? + y,y, + i/i)] = - C„

,V,2/,[15a3?(2/i + 2/,)-20x,(2/? +2/,2/, + 2/i) + 6(2/? +2/f2/, + 2/,yi +^1)]= C5.

Putting

(40)
«< = t/j 2/3

,

*<' = «/l«/2(2/l + «/2).

we obtain the fundamental equations

[ „_f- _ 6C3^^^-3Cs'^^-9C3C,w-6C 3

(41)
' 2M^ + 3C,M + 4Ci

[ 2(m; - g^= 6m« + 3C^M + SCf.

Eliminating w between these equations we obtain the nonic of Peaeson:

= 24:u' + M'Q^u' + 36C^M« + 72C3C5M' + 90C|m'

(42) — 18CiM* + 444CiC,M* + (288C| — lOStgC^Cs + 27Ci)M^

- (63C^ C| + 72Ci Cs)^^ — 96C* C,w - 24C|.

When a root of this equation is found, we may calculate the corresponding

value of w from either of the equations (41). The values of y-^ and y^ are then

equal to the roots of the equation

(43) rf-^y^u^O.

The value of x^ = x^ is found from the equation

(44)
'

3«Xi = 2w + Cj.

Finally we get the values of z^ and s^ from (39). These equations are all

linear with exception of (4-3). For obtaining real solutions from this equation it is

necessary that the inequahty

M,2_ 4^3 ->

is fulfilled. It may also be observed that for the reality of a solution it is neces-

sary that the resulting values of a^ and a| — obtained through the first two equa-

tions (36) — should be positive.

It is here supposed that we have solved the nonic (42). The solution of an

equation of the ninth degree, where almost all powers, to the ninth, of the un-
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known quantity are existing, is, however, a very laborious operation. Mr Pearson

has indeed possessed the energy to perform this heroic task in some instances

in his first memoir on these topics from the year 1894. But I fear that he will

have few successors, if the dissection of the frequency curve into two components

is not very urgent.

A somewhat less tedious work may lead to the knowledge of the roots, if we

start from the two equations (41).

Writing

j- C7, = 6C3««— SCgM' — gCgt.M — 6Ci,

(45) [/, = 2M« + 3CiM + 4q,

I
'2f73 = 6«« + 3C,M + 3Ci,

we have

(46)
I

--^3 = ^,

and here JJ^, U^ and TJ^ are polynoms in u of the third degree. If the roots of

the equations U^= U^= U^^(i be known, the roots of the nonio may be easily

discussed without solving the equation (42).

With this aim we construct the two curves defined by (46). We call them I

and II. If

?7j = 6C3 [u— a^) (m— ttj) [u— ag),

U, = 2 {u-\)[u-\)[u-\),
[Tg = 3 (m— Cj) (m — Cg) [u— C3),

we find that I has infinite branches for u^b^, u = h^ and u = h^. The curve II

has generally a parabola-like appearance. Supposing c^ and c^ to be imaginary we

have for instance the following form of the curves I and II — cs^, Og, a^ and 6^^,

&g, 63 being supposed to be all real.

We find from inspection that we must possess in this case 5 real roots of the

nonic, the approximate values of which are directly found from the figure. For a

more detailed knowledge of the roots we may calculate the curves more accurately

in the neighbourhood of these approximate values.

I have applied this method to some instances and have found the determi-

nation of the values of the roots in this manner tolerably easy.

There is, however, enough labour left to discourage an inquirer from ope-

rating an mathematical dissection of a given frequency curve. In some instances

the operation may be performed in an easier manner.

l:o Suppose the values of h^ and h^ to be given. The dissection of the frequency

curve is then very easy. Using the same denominations as before (6i
=

«/i, b^^y^

a. s. o.) we get 0^ and 0^ from the relations

(2/1 — 2/2)^1 =—2/2'

(2/1 — 2/2) ^3 = Wi
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and, as Xi — x^ = x, we now only want an equation for x, which is

and the problem is solved.

This method is applicable, whenever the collective object consists of a mixture

of two races (types), the mean value of the character in question being known for

each of these types.

2:o Suppose the given frequency curve to be symmetrical. This case has been

treated by Pbabson (1894). It is found that the two components are then either

symmetrically situated to the mean and possess the same number of individuals,

or that the two components have the same mean, coinciding with that of the fre-

quency curve. In either case the solution is found through elementary operations.

3:o Suppose the two components to possess equal standard deviations.

Using the same abbreviations as before and putting

i! = af — a^

we now have the equations

^1 + ^2 = 1>

(47) h\z, + llB^ = -t,

63^1 +&i^2 = — Cs,

from which equations we may eliminate ^j, z^, b^ and b^. The resulting equation

for t is then

(48) 2t' + i:j + i:i = o.

When this equation is solved, we find b^ and b^ to be the roots of the

quadratic

49) f-ky^t = 0.

Finally the values of z^ and z^ are found from the two first equations (47).

The supposition here made — that o^ ^ o^ — is of a more general character

than those made in l:o and 2:o. Especially in biology it is a fairly probable sup-

position that two types found together in the nature often possess nearly equal

standard deviations. We may then use this method to separate the two components.

We find for instance that the 19 pure lines of Phaseolus vulgaris cultivated by

JoHANHSBN (comparc table V) possess standard deviations that are surely not iden-

tical, but yet are of the same order. As an instance I have applied this method

to the same curve, to which Pearson first has applied his general method, namely

the distribution of the frequency in the breadth of the head of 1000 Neapolitan

crabs, measured by Weldon.

The equation (48) gave here, using the values of the moments obtained by

Pearson,
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^ = — 11.32,

and hence is derived, taking the origin at the mean (= -(- 16.80),

C5 = 3.38,

6i
= — &i50,

&g = + 1.74,

c, = 212,

C2 = 788.

The form of the components and of the resultant curve is shown from fig. 18,

where I have used the same scale as Peaeson for faciHtating the comparison

with his curves. The value of a Ues between the values, found by Pearson for

the two components. Though his values are rather unequal, we find that the agree-

ment in fig. 18 with the observed frequency curve is satisfactory.

I have applied this method also to artificial mixtures of different pure lines

of the table V, and obtained acceptable results that at least may be used as a first

approximation to a more accurate solution.

It is to be observed that the equation (48) coincides with the equation U^ = 0,

which is required for the general solution. Hence it is no loss of time to begin

with this approximate method, which may be considered as an abridged method for

dissecting frequency curves. It must be remarked that the problem of dissecting

frequency curves into components is to a certain degree undetermined, there being

a possibility of an infinity of solutions. Under such circumstances it is often not

judicious to use too rigorous mathematical methods. Which may be understood in

just the same manner as it is not judicious to use too many decimals in nume-

rical calculations. It causes a temptation to overestimate the exactness of the result.

Naturally this »abridged method* is only applicable when there are a priori

reasons for the assumption that the two components have nearly equal standard

deviations. There are many problems, where no such reasons exist. If we consider

for instance the frequency curve of the errors in astronomical transit observations,

we may divide the perturbative sources of error into two different groups. On

the one side we have the errors caused by psychological changes in the observer,

on the other accidental changes in the instrument and in fhe environs. It is

reasonable that the frequency curve may be considered as the resultant of two

(normal) curves, representing respectively the subjective and the objective errors of

observations. But there is no reason for the assumption that these two sources of

errors should have equal or nearly equal standard deviations. In such a case there

would be no meaning in the application of the abridged method.

I have endeavoured to obtain, with the help of Engsteom, materials for

discussing the astronomical problem just now mentioned, which will no doubt furnish

an excellent instance relating to the importance of the problem to dissect a frequency

curve into unknown components. Up to this moment^ however, I have not succeeded

in getting a frequency curve with a sufficient number of individual observations.
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I have extended the method here named the abridged one to the problem

coucerning the dissection of frequency curves into three components. The solution

is then dependent on a certain septic.

It may occur also that there is reason to consider a given frequency curve

as the resultant of two curves of type B. Such is for instance the case with many

midtimodal curves obtained in botany. The ray flowers of Chrysanthemum segetum

belong to this class of curves, as may be found from some statistics gathered by

Hugo de Vbies and Ludwig ^). During this summer I have counted in a field (where

peas were cultivated) the ray flowers of 1015 individuals of this flower. The result

is shown from the following table.

Ninth Example. Distribution of frequency of ray flowers of 1015 specimens

of Chrysanthemum segetum.

Number of ray flowers 8
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Choosing the mean of the given frequency curve as the origin of the coor-

dinates, we obtain through multipHcation by 1, x, x^ and x^ and adding the

equations of condition

(51)
= /Cj S a;<J)i (x — c^) + k^ I x-^^ (e^ — x),

|J.2 = hj^'E^x^^ix— cj + k^lx^^(c^ — x),

H = h^x^^(x— Ci) + /Cg X x^ <j)3 (Cg — x).

Now we have

and in like manner

But
S* =1,

'Ly^^X' + l,

and hence we have

S a:;^
.],, (ic - Cj) = cf + 2ci X, + Xf + X^

,

2x'^,(x-c,) = c? + 3c? X, + 3c, (Xf + \) + Xf + 3Xf + X,,

and corresponding expressions for ^x'^^{c^ — x).

The equations (51) thus take the form

!^o
^^

"'I ~r "'2

'

= Aj [cj + Xj] + k^ [cg — Xg],

[^2 = h [cf + 2c, X, + X? + XJ + 7., [ci - 2c, X, + X^ + X,].

[^3 = K [cf + 3cf X, + 3c, (Xf + XJ + X? + 3Xf + XJ

+ k, [cf - 3ci X, + 3c, (X| + X,) - Xi — 3X1 - X,].

From the first two equations we get

(52)
('^a
— Ci — >^i

— K)\ = + H (^2 — ^2)'

(c, — Cj — Xj — Xg) A, = —
[j-o (Ci + XJ,

which expressions substituted in the latter two equations give us the relations

V2(Cs-c,-X,-X,) = (c,-X,)[c?-f2c,X, + X?+X,]-(c, + XJ[ci-2c,X, + X|+X,],

V3 {c, - c,- X,- X,) = (c,- X,) [c\ + 3c? X, + 3c, (Xf + XJ + Xf + 3Xf + X,]

- (Ci + \) [cl -3ci X,+ 3c„(Xi + X,)-X3 _3X| -X,].

I do not know, if these equations can be algebraically solved (h. e. reduced to

the 4'" degree). They may be numerically discussed, though somewhat laboriously.

It seems, however, advisable to take another course.
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In jnany cased the maximum ordinate of the two components may be considered

as known with a good approximation. Calling these ordinates «/^ and y^ we thus get

the relations

(53) y^ = h^e'' \ y^ = \e~ ^

by means of which /Cj and h^ may be eliminated from the equations of condition. It

is too possible in this manner to attack the problem somewhat more generally. We
may write

F{x)=f,{x)+Mxl
where

f,{x) = B,'ii,{x) + B,'^^,,

f,[x)^B,"i/,[x]^B,"^^„

or we can make use of another scale than unity, one for each function (say w^

and Mg).

Should it be allowable to put B^' == B^' = (or w^ = co^ = 1), we get the

relations

= 2/ie '(Ci + ^i) + 2/2^ ^{(^i
— \)-

These equations indeed are of transcendental nature, but may easily be dis-

cussed with the help of graphical methods.

Lnnds Univ:s Irsskiift. ^f. P. Afil. 2. BJ 1,



To the tables and diagrams.

Tab. A and Tab. B contain the values, to four decimals, of the probability integral and of

the probability function in the form used in this memoir. These tables are extracted from the

•New tables of the probability integrals by W. F. Sheppard in >Biometrika» Vol. II (1903).

Tab. and Tab. D give the values of the functions (Oj and tp^, used in the formula for

frequency curves of type A. The expression of the frequency is

c F{x) =
(j-o [<p„ {X)+ P3<f ,+ p,.p,+ ...].

Tab. E gives the value of the function 'i (cc), used in the formulas for frequency curves o
K

type B, for integer values of x. For such values vpe have

—\-,x
e k

(!) (as) = —

I

'

which function is tabulated in the memoir of Bortkewitseh »Das Gesetz der kleinen iZahlen*, from

which this table is extracted.

Fig. ]

.

Normal curve, Pa = p4 = 0-

» 2. Frequency curve with positive skevvness, pg = -|- 0.1, Pj = 0.

» 3. Frequency curve with positive skewness, Ps = + 0.2, p^ ^ 0.

» 4. Frequency curve with positive excess, p^ = 0, ?i = -\- 0.1.

» 5. Frequency curve with negative excess, ^j ^ 0, P4 ^ — 0.1.

J 6. Frequency of glands in the leg of female swine (Davknpoet).

> 7. Frequency of stigmatic bands of papaver (ChabIjIee).

» 8. Line A of brown beans (Johannsen).

9. Line G of brown beans (Johannsen).

» 10. Line of brown beans (Johannsen).

» 11. Cephalic Index of Swedish recruits (Eetzius and FOrst).

» 12. Typhoid Fever in Lund 1905 (Rybercj).

» 13. Frequency curves of type B.

J 14. Frequency of Petals of Ranunculus bulbosus (de Vexes).

» 15. Failing percentage of barley (Johanstsen).

» 16. Frequency of glands of swine treated as a B-curve.

» 17. Dissection of frequency curves.

» 18. Breadth of >forehead» of Naples crabs (Weldon).

> 19. Distribution of frequency of ray flowers -of 1016 samples of Chrysanthemum segetum

(Chaeliee).

The observed values are in all diagrams indicated by small circles.
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{x— bf
1 2o*

TAB. B. Table of the function (pg = a<p{x) = —p^=e
V2%

X—

6

a
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TAB. C. Table of the function f^ = (s*tp"'{x).

N.B.I Permutation of sign at the argument 1.731

45

x-b
a
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TAB. D. Table of the function if^ = a^f[x).

N.B.I Permutations of sign at the arguments 0.74 and 2.33.

X— h
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TAB. E. TaUe of the function <!fy^{x)

for integer values of x.

x=
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x=
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x=



)U
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